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Layered and nanotubular systems that are metallic or graphitic are known to exhibit unusual dispersive van
der Waals �vdW� power laws under some circumstances. In this Brief Report we investigate the vdW power
laws of bulk and finite layered systems and their interactions with other layered systems and atoms in the
electromagnetically nonretarded case. The investigation reveals substantial difference between “cleavage” and
“exfoliation” of graphite and metals where cleavage obeys a C2D−2 vdW power law while exfoliation obeys a
C3 log�D /D0�D−3 law for graphitics and a C5/2D−5/2 law for layered metals. This leads to questions of rel-
evance in the interpretation of experimental results for these systems which have previously assumed more
trivial differences. Furthermore we gather further insight into the effect of scale on the vdW power laws of
systems that simultaneously exhibit macroscopic and nanoscopic dimensions. We show that, for metallic and
graphitic layered systems, the known “unusual” power laws can be reduced to standard or near standard power
laws when the effective scale of one or more dimension is changed. This allows better identification of the
systems for which the commonly employed “sum of C6D−6” type vdW methods might be valid such as layered
bulk to layered bulk and layered bulk to atom.
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Layered bulk systems such as graphite and boron nitride
have their atoms confined to a series of spatially discrete
planes with interplanar distances significantly greater than
the intraplanar atomic separations, e.g., 3.34 vs 1.41 Å for
graphite. They can exhibit unusual electronic behavior due to
the nanometer scale of the layer thickness and macroscopic
scale of the other two dimensions. This scale variation means
that great care must be taken in investigating subtle physical
effects such as dispersion forces as previous examples
demonstrate.1–3

All separated electronic systems exhibit long-range attrac-
tive potentials arising from instantaneous electron fluctua-
tions correlating via the Coulomb potential. These long-
range potentials �often called van der Waals dispersion
potentials when electromagnetic retardation is ignored� are
typically absent from the commonest ab initio calculations
such as density-functional theory in the local-density ap-
proximation or generalized gradient approximation, or are
approximated by pairwise interatomic potentials of the form
C6D−6 which are “summed over” in some way �see, e.g.,
Refs. 4–9� to obtain an effective power law of the form
CnD−n. Here the exponent n is an integer and depends only
on the geometry of the system while Cn depends on the in-
dividual atoms as well as the geometry.

As summarized in Ref. 1 the exponent of an asymptotic
power law in metallic and graphitic systems can depend on
both the geometry and the type of material, with metals,
graphene, and insulators all differing. For example, with two
parallel, nanothin layers of a metal, graphene and insulator,
the power-law exponents are 5/2, 3, and 4, respectively
�where insulators do obey a “sum over D−6” rule�. When the
number of layers is infinite we will show that the power
depends not only on the type of material, but also the way
the layers are divided. This will be investigated through three

types of division: equal separation of all layers �“stretch-
ing”�, division into two sub-bulks �“cleavage”�, and removal
of one layer from the top of a bulk �“exfoliation”�. Further-
more the interaction of layered bulks with atoms will be
studied.

In this Brief Report we investigate metallic and graphitic
systems under these different types of division �insulators
have trivial “sum over atoms” exponents and need no further
investigation�. Neither metals nor graphitic systems are guar-
anteed to obey “sum over layer” power laws and special care
must be taken to evaluate their long-range correlation effects.
As with previous work3,10–18 we make use of the adiabatic-
connection formula and fluctuation dissipation theorem un-
der the random-phase approximation �RPA� to calculate the
leading power laws under these different methods of divi-
sion. All results in this Brief Report are for the electromag-
netically nonretarded case which19 show to be unimportant in
the range of interest for similar systems.

Stretched graphitic systems �“straphite”� have already
been studied in Ref. 3 where it was shown that the dispersion
potential for an infinite number of graphene layers, each with
interlayer spacing D, follows a C3D−3 asymptotic power law
at T=0 K where C3=0.80 eV Å3. We may make use of the
same basic approach employed for graphitic layered systems
to calculate the dispersion for metallic layered systems �we
believe that graphite-metal intercalates may be examples of
this type of system�. For brevity we define an intralayer Cou-
lomb potential multiplied by a density-density response func-
tion

C�q,u� = �̄�q,u�w̄�q� , �1�

where q is the wave number parallel to the plane, �̄�q ,u� is
the noninteracting electron density-density response in a
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layer, and w̄�q� is the Coulomb potential. When the system is
metallic this takes the form C�q ,u�=−�p2D�q�2 /u2 for q→0

where �p2D�q�= �
n0e2q

2�0me
�1/2, n0=Ne−layer /Alayer is the two-

dimensional �2D� electron density of each layer, and me is
the mass of an electron. We may thus utilize Eqs. 4 and 7 of
Ref. 3 and change variables to �=qD and �
=�D�p2D�q�−1u to show that the difference in the correlation
energy per layer from the infinitely separated case takes the
form

UvdW �
1

D5/2�
0

1

d��
0

�

�3/2d��
0

�

d�G��,�,�� �2�

demonstrating a C5/2D−5/2 dispersion power law for layered

metals. Numerical evaluation gives C5/2=9.26��
n0e2

2�0me
�1/2. As

with graphitic systems this power law �although not the con-
stant prefactor� is universal to all multilayered metallic sys-
tems with an infinite stack of isotropically stretched layers.

Given the universality of the van der Waals exponent for
isotropic stretching of a given material it is worth exploring
the validity of a “sum over CnD−n” rule for layered systems.
In Table I we present the ratio of the Cn coefficient for a
trilayered or stretched system to the bilayered system for
metals and straphite as well as a the “sum over Cn” predic-
tion for this ratio �here n is 3 for straphite and 5/2 for met-
als�. The prediction is somewhat sound for straphite with an
overprediction of 14% for straphite but is much less so for
metals where it leads to a 30% overprediction of the poten-
tial. This suggests that, even using a correct power law, rules
which effectively sum the coefficients may prove trouble-
some.

“Cleavage” represents another means of division of a lay-
ered system. Here the system is split between a single pair of
layers to form two new layered systems. We refer to the new
systems as half bulks as opposed to the original full bulk. For
homogeneous, infinite layered systems the two are mirror
images of each other.

Separating a layered bulk into two smaller half bulks is
equivalent to keeping all but one layer at an interlayer spac-
ing d while increasing the remaining one to D	d as in Fig.
1 �we ignore any relaxation of the layers or layer spacing at
the newly created surfaces�. Here we are interested in the
total dispersion energy per unit area rather than that per layer
per area as in the previous case.

We may make use of the second-order perturbation for-

mula for the dispersion energy between the half bulks while
treating that within them to all orders �sometimes called the
Zaremba-Kohn20 formula�. Thus

UvdW =
− �

4
2�
0

�

du�
0

�

qdqF�q,u;D� , �3�

where

F�q,u;D� � e−2qDTr����=1�q,u;d�wb�qD�	2
 , �4�

where wij
b = w̄e−qd�i+j� governs the interaction only between

the two separate half bulks while �ij is the full interacting
response of the density in layer i to a potential perturbation at
layer j within a single half bulk.

Expanding the trace gives

F = e−2qD�
ijkl

�ijwjk
b �klwli

b = e−2qD��
i

�nip
i
2

, �5�

where �ni is the interacting electron density response of layer
i in the half bulk to an external potential perturbation �vi
= w̄pi with p=e−qd.

We may calculate �ni through the RPA equation �ni
=Cpi+C� j�0p�i−j��nj where C=C�q ,u� is as defined in Eq.
�1�. This gives the following recursion relationship:

�ni+2 + �ni = ��p + p−1� − C�p − p−1�	�ni+1, �6�

where �n0=C�1+� j�0pj�nj� and we require �n�
�. Writ-
ing a formal power series generating function M�x ;C�
=�i�0�nix

i transforms Eq. �6� into

�1 + x2�M�x;C� − �n0 − x�n1 = x��p + p−1� + C�p − p−1�	

��M�x;C� − �n0	 , �7�

so that �with correct series asymptotics�

M�x;C� =
C�p − p−1�

p�1 − r−x��1 − r+p−1�
, �8�

where r�=����2−1, �= 1
2 �p+ p−1�+ 1

2C�p− p−1�. Noting that
�ip

i�ni=M�p� lets us write Eq. �5� as

F�q,u;d,D� = e−2qDM�e−qd;C�q,u�	2. �9�

For graphite1 shows that C�q ,u�=��1+u2 / �v0q�2	−1/2

where v0=5.0�105 ms−1, �= e2

4�0�v0
=12.1. Defining �

=d /D, �=qD and �=ud /v0 lets us expand F�� ,��

TABLE I. Comparison of the system to bilayer ratio of the per-
layer vdW coefficients for graphitic and metallic systems, for trilay-
ered and stretched systems. Column 3 is obtained by summing over
the individual layers and takes the form 2

3 �2+2−n� for tri/bi and
2��p� for stretched/bi.

System Cn
system /Cn

bi Predicted Error �%�

Tri-graphene 1.3632 1.4167 3.6

Stretched graphite 2.1157 2.4041 14

Tri-metal 1.3496 1.4512 7.5

Stretched metal 2.0628 2.6830 30
FIG. 1. Layers after “cleavage.”
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=F�qD ,ud /v0 ;� ,1� in powers of �. To leading order this
gives

F��,�� = e−2� �2

�� + � + ��2 + 2���2
�10�

for graphite. A similar change of variables yields a similar
leading order expansion for metals. For these cases Eq. �3�
gives a leading power law of exponent n=2 as with insula-
tors.

Thus for graphite and metals we can write

UvdW�D → �� �
C2

D2 , �11�

where

C2 =
− �

4
2

��2�
22 �

0

�

d�T��� . �12�

Here T���=
v0

d �2��+�+��2+2���−2 for graphite and T���
=

�p3D
�2

�1+�2+���2+2�−2 for metals with �p3D= �
n0e2

�0med
�1/2.

For graphite we find C2=0.13d−1 eV Å3 and for metals C2
=1.6886�10−3��p3D. The latter result agrees exactly with
continuous but anisotropic models of half-bulk metals where
electron movement is restricted to be parallel to the surface,
as is expected if the d→0 limit is well defined.

These results differ significantly from those expected by a
simple sum-of-layers approach where we would expect
graphene to obey a C1D−1 power law, and metals to obey a
C1/2D−1/2 power law. The screening in these layered systems
seems to cancel the different correlation effects of the indi-
vidual layers so that they act as pseudoinsulating bulks.

Another means of dividing graphene �“exfoliation”� is to
peel a single layer of graphene from the top of a bulk. This
represents yet another method of division where one system
is a layered half bulk and the other a single layer. We restrict
our investigation to the case where the removed layer plane
is always stiff and parallel to the planar surface of the bulk.

To model exfoliation we use a similar perturbative
approach to cleavage but in Eq. �3� set F
=e−2qDM�e−qd ;C� C

1+C the product of the interacting response
of a half bulk and a single layer. For graphene this compli-
cates the problem as the �=d /D→0 limit works well for M
but not for C

1+C . Here we keep � in the single-layer response
only. Under transformation of variables �=qD and �= �

v0
u

�which already gives a D−2 outside the integrals� we find

F =
v0

D
�2�e−2��� + � + ��2 + 2���−1

����2 + ����2 + ����−1. �13�

Setting �=1 �where �2e−2� takes its maximum�, approximat-
ing ��2+�2 by �+� and �+�+��2+2�� by 2��+�� al-
lows us to approximate the � integral to show a leading
� log��� term. This is equivalent to a power law of the form

UvdW�D → �� �
C3 log�D/D0�

D3 �14�

and numerical calculation of Eq. �3� validates this assump-
tion. For graphene �where �=12.1� we find D0=0.16d and
C3=0.07 eV Å3.

A similar analysis of metals shows a C5/2D−5/2 power law
with C5/2=6.42�10−3�d��p3D=9.07�10−3��p2D�q=1�.
The 5/2 power law is the same as that of a metal layer inter-
acting with a continuum model of a metallic half bulk as is,
again, predicted by the limit of d→0.

While this analysis is not valid in the small D regime it is
worth noting that exfoliation and cleavage exhibit different
power laws for graphite. This suggests that sum of C6 mod-
els for converting experimental results from one to the other
such as those employed in Ref. 21 may need reexamination.
Unfortunately accurate calculation of the dispersion energy
of such systems for D�d0 �where d0 is the layer spacing of
graphite� is as yet intractable.

In nanoscale systems there are often combinations of mol-
ecules, layers, and bulks. A simple example is an atom inter-
acting with the surface of a layered metal or a molecule
interacting with a graphene surface. Here the power law
could be affected by the layering and electronic properties of
the material.

In the coordinate system used for the layered models the
interacting response function of an infinitely small “atom”
located at Zẑ can be written as

�A�q,q�,z,z�;u� = ��iu��q · q� + �z�z�	��z − Z���z� − Z� ,

�15�

where q and q� are reciprocal lattice vectors in the plane and
��iu� is the interacting dipole polarizability of the atom at
imaginary frequency u. This formula, used in Eqs. �3� and
�4�, correctly reproduces the C6D−6 power law for interacting
atoms.

We can use Eq. �15� to calculate the interaction of an
atom with a layered bulk �metallic or graphitic� by making
use of Eqs. �3� and �4�. This gives a power-law exponent n
=3 in agreement with the prediction of a sum over C6D−6

potentials. This result strongly suggests that the unusual
power laws exhibited by layered systems result from the in-
teraction between long-range fluctuations in both systems
and that removing them from one reduces the systems to
“typical” dispersive behavior.

As has been seen here and in other work1–3 the asymptotic
power-law behavior of layered systems can be anything but
simple. Both graphitic and metallic systems exhibit vastly
different dispersive power laws to insulators so that “sum of
C6” approximations such as those typically employed cannot
be used in the asymptotic region. It seems unlikely that, with
such varied asymptotes, the cohesive energies and other
similar measurables can be investigated using simple mod-
els.

To illustrate these discrepancies we present in Table II a
summary of the various power laws studied here. The insu-
lator result represents the “classic” sum over atomic power-
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laws behavior of each system and any difference from its
exponent represents “unusual” behavior.

While uniform stretching results in different power laws
for metals, graphitics and insulators, cleavage removes this
variation and involves the same exponent for all materials.
This suggests that the interlayer screening induced by the
Coulomb potential dominates the local response of each
layer in the van der Waals energy for such systems convert-
ing their behavior into that of nonlayered or insulating bulks.
This is further demonstrated by the fact that both the power
law and coefficient of cleaved layered metals are the same as
that of cleaved bulk metals with electron movement re-
stricted to the plane.

By contrast, keeping a finite number of layers asymptoti-
cally isolated, as in exfoliation, or all layers asymptotically
separated, as in stretching, returns different power laws for
different systems. In these cases at least one layer can be
considered infinitesimally thin which we believe to be a re-
quirement for the unusual power laws. Replacing the isolated
layer by an atom, however, returns the classical results which
suggests that at least one large dimension is required for
unusual vdW dispersion power laws as postulated in Refs. 1
and 2.

Overall, as this work and references1–3 demonstrate, the
dispersion forces of systems with a mix of nanometer and
macroscopic length scales are more complex than classic Lif-
shitz theory predicts. As the differing power laws for cleav-
age and exfoliation demonstrate we must take great care in
using indirectly derived cohesive energies from experiment.

These unusual van der Waals power laws may also have
profound effects on the behavior of many nanosystems. For
certain systems it may be necessary to adapt molecular dy-
namics and other semiempirical and approximate ab initio
simulation methods to account for these differences in order
to best replicate experiment.
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TABLE II. Asymptotic power laws for various systems demon-
strating both the material and structural dependence.

Graphite Metal Insulator

Stretching D−3 D−5/2 D−4

Cleavage D−2 D−2 D−2

Exfoliation log� D
D0

�D−3 D−5/2 D−3

Atom-bulk D−3 D−3 D−3
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